求高人帮忙翻译下 把全文翻译成中文 怎么翻译?

CONSTRUCTION OF OPTIMAL-PROFILE FLARE AND
VENTILATION TUBES USING DIGITAL COMPUTERS
A. S, Obukhov, V. V. Vasil'ev,
and G. So Stepanyants
UDC 697.85.001.24
The strength and stability of flare and ventilation pipes under the action of the wind and seismic loads
are determined, besides the mechanical and elastic characteristics of the material of the pipes, by two
geometric parameters: the diameter D and the wall thickness s. The statically indeterminate problem of the
calculation and construction of an optimal-profile tube is an iteration problem; therefore, an algorithm for an
exact calculation can be implemented only in a digital computer. Usually, in the calculation, the wall thickness
is varied from its minimal to its maximal value with a constant diameter of the pipe. As a consequence of the
limitation on the maximal wall thickness, the maximal height of a freely standing pipe of constant diameter is
also limited. With the aim of overcoming the height barrier, guy ropes are used (which is not usual practice
in the oil refining and petrochemical industry), or the pipe is enclosed in a steel mast having a considerably
greater rigidity (this is bound up with a considerable increase in the cost).
The starting data with the calculation and construction of pipes are the height and the diameter of the pipe
mouth the minimal and maximal wall thicknesses, the strength and elastic properties of the material, the permissible
amplitude of the vibrations, and the region of installation, determining the wind and seismic loads.
The target function of the optimization problem is a minimum of the cost of materials. Since the permissible
bending moment in a calculating cross section is proportional to Ds 2, while the material cost is proportional to
Ds, to satisfy the condition of a minimum of the material cost with a given value of the diameter of the pipe,
first of all the wall thickness must be increased to its limiting value.
The algorithm of the calculation is so constructed that, with the attainment of a maximal value of the wall
thickness, permissible with a given value of the pipe diameter, the diameter is increased by a determined spacing.
Here the pipe is divided over the height into a sufficiently large number of cylindrical sections. The block
scheme of the calculation is constructed in the following order: 1) input of starting data; 2) division into sections;
3) determination of coefficients of the increase in the velocity head over the pipe height; 4) determination
of the coefficients of the velocity-head pulsation; 5) designation of the initial approximation of the diameter (at
the mouth of the pipe) and the wall thickness over the height (with respect to the lower limitation); 6) calculation
of period of vibrations of pipe; 7) determination of rigidity; 8) determination of period of vibrations of
pipe; 9) determination of dynamic component of wind force; 10)determination of total wind force; 11) determination
of bending moments over pipe height; 12) determination of axial compressive force over pipe height;
13) calculation of stress from bending moment and axial component of compressive force; 14)determination
of value of the permissible stresses with respect to stability, due to the bending moment and the axial compressive
force; 15) determination of the ratio of the actual stress to the permissible (if this ratio is greater than
1, the calculation is repeated from point 6, increasing the spacLag by the wall thickness, or, with a maximal
wall thickness, increasing the spacing by the diameter).
In accordance with the above-described block diagram, an algorithm and the "Flare" program were developed
for a calculation of the strength and stability of flare and ventilation pipes in a Minsk-22 digital computer.
The calculations were made using the technical standard materials in force [1-31. By way of example,
Fig. 1 gives the results of a calculation, using the program developed, of ventilation pipes of optimal profile
made of glass plastic, with a height of 50-60 m, used for the evacuation of exhaust gases containing chlorine,
ammonia, sulfur and nitrogen oxides, hydrogen sulfide, hydrogen chloride and fluoride, and other harmful impurities,
at a great height to disperse them to harmless concentrations, The calculation was made for the III
geographical region with the following data and limitations: the material density was 2 g/em3; the minimal and
maximal wall thickness was, respectively, 6 and 20 mm; the margin of stability was 9. The critical stress
with respect to stability was calculated using the formula[4]
Zcr ~ 0~7 -~ V'ExEy ,
where E x and Ey is the modulus of elasticity, respectively, in annular and meriodinal directions.

Translated from Khimieheskoe i Neftyanoe Mashinostroenie, No. 3, pp. 17-18, March, 1978.
226 0009-2355/78/0304-0226507.50 9 1978 Plenum Publishing Corporation

Optimal profile of ventilation pipes made of glassa) height 50 m; b) height 60 m.

 

In practice, the pipes are made up of conical shells, inscribed in a profile of stepwise form.
It must be noted that the maximal height of a freely standing pipe of constant diameter is 32-39 m.

                                       LITERATURE CITED

1.All-Union State Standard (GOST) 14249-73, Vessels and Apparatus, Norms and Methods for Strength Calculation [in Russian], Standartov, Moscow (1973).
I2.nstructions for Calculating the Wind Load of Industrial Equipment of the Column Type and Open Structures [in Russian], Stroiizdat, Moscow (1965).
3.State Standard (OST) 26-487-72, Vessels and Apparatus. Norms and Methods for Strength Calculation.Calculated Stresses from Wind Loading and Seismic Action in Vertical Cylindrical Apparatus [in Russian],Minkhimneftemash SSSR, Moscow (1972).
4.A. S. Obukhov and V. V. Vasil'ev, "Calculation of freely standing cylindrical exhaust pipes made of glass plastic," in: Anticorrosion Work in Construction, Series IV [in Russian], No. 5 (108), TsBNTI Minmontazhspetsstroe (1976), pp. 14-16.

最佳答案
本回答由提问者推荐

_Sibly 3级
2010-04-10 回答

施工最优姿态照明和
通风管道用数字计算机
答:秒,五,五瓦西尔奥布霍夫,的EV,
和G.所以斯捷潘尼扬茨
华联发展集团697.85.001.24
耀斑的强度和通风管道的稳定性和下风和地震荷载作用
有决心,除了对管道材料力学和弹性特性的二,
几何参数:直径D和壁厚第该超静定问题
计算和最佳姿态管建设是一个迭代的问题,因此,对于一个算法
可以实现精确的计算仅在数字电脑。通常,在计算中,墙体厚度
不同的是从最小到其最大价值与管道直径不变。作为后果
最大壁厚的限制,一个自由的地位不断管道直径最大高度
也很有限。随着克服障碍目标的高度,拉索的使用(这是不常见的做法
在石油炼制和石化工业),或管道封闭在一个钢具有相当肥大
更大的刚性(这是必然的,在相当大的成本增加了)。
随着计算和管道建设的开始数据的高度和直径的管道
口最小和最大壁厚,强度和材料,弹性性能的许可
振幅的振动,并在安装区域,确定了风和地震荷载。
该优化问题的目标函数是最低的材料成本。由于允许
弯曲在计算截面的时刻在DS 2成正比,而原料成本是成正比
副局长,来满足一个管道的直径在一给定值的材料成本最低的情况下,
所有墙壁的厚度首先必须增加它的限制值。
计算的算法就是如此,随着墙上的一个最大价值的实现
厚度,以管道直径给定值允许的,它的直径增加了一个确定的间距。
这里的管道是分歧的高度为一个足够大的圆柱部分的数目。块
计算的计划是建造顺序如下:1)启动数据输入;到第2)分工;
3)确定在速度超过头部的管道高度增加系数; 4)的测定
对速度头脉动系数; 5)的直径(在指定的初始近似
管道的口)和在与有关较低的限制高度(壁厚); 6)计算
对管道振动的时期; 7)硬度测定; 8)振动的周期的确定
管; 9)风力的动态组件的决心; 10)测定总风力; 11)的测定
超过管道高度弯矩; 12)轴向压缩力测定管道高度以上;
13)从应力计算弯矩和轴向压缩力的组成部分; 14)的测定
在允许值的应力方面的稳定,由于弯矩和轴向压
力; 15)的实际应力比决心许可(如果这个比例大于
1,重复计算从点六,增加墙的厚度,或与spacLag一个极大
墙体厚度,增加了直径间距)。
与上述描述的框图,算法和“火炬”计划制定了根据
为一的实力和在明斯克- 22数码电脑耀斑和通风管道的稳定性计算。
计算使用进行了有效的技术标准材料[1-31。通过举例的方式,
图。 1给出了一个计算结果,使用该程序开发的最佳配置通风管道,
玻璃胶,有50-60米的高度,为含氯废气疏散使用,
氨,硫和氮氧化物,硫化氢,氯化物和氢氟等有害杂质,
在一个伟大的高度来驱散他们无害的浓度,计算是为三世
地理区域的下列数据和限制:在材料的密度为2 g/em3;最小和
最大壁厚分别为6和20毫米;的稳定裕度为9。临界压力
关于稳定性的计算公式[4]
ZCR后0〜7〜 - 〜V'ExEy,
其中E x和Ey蛋白是弹性模量,分别在环形和meriodinal方向。

译自Khimieheskoe我和石油机械制造,第3页。 17-18日,3月,1978年。
226 0009-2355 / 78/0304-0226507.50?九中全会1978年出版公司

搜狗问问

通风管道的优化配置由glassa)高度50米;二)高度60米

 

在实践中,管道是由圆锥壳,上了一个逐步形成的形象。
必须指出,一个自由的地位不断管道直径最大高度为32-39米

文献引用

1,所有,联盟国家标准(俄罗斯国家)14249-73,船只和设备,规范和强度俄文],Standartov,莫斯科(1973年)计算[方法。
I2.nstructions计算的列的类型和俄文],Stroiizdat,莫斯科(1965年)[开放结构风荷载的工业设备。
3.State标准(原声)26-487-72,船只和设备。规范和来自风荷载和地震作用的立式圆柱仪[俄罗斯],Minkhimneftemash SSSR,莫斯科(1972年)应力强度Calculation.Calculated方法。
4.a.中南奥布霍夫和VV Vasil'ev,“自由站立的圆柱形玻璃塑料制成的排气管的计算,”在:防腐中的党建工作,系列四[俄罗斯],第5号(108),TsBNTI Minmontazhspetsstroe(1976),页。 14-16

最新回答 (1条回答)

头像
匿名用户 2级
2010-04-10 回答

晕 楼上的以为我们是傻X ,哪有这样译的。。。。。。